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SUMMARY

Numerical investigation of transonic turbulent flows separated by

streamline curvature and shock wave - boundary layer interaction is

presented. The free stream Mach numbers considered are 0.4, 0.5, 0.6, 0.7,

0.8, 0.825, 0.85, 0.875, 0.90, and 0.925. In the numerical method, the

conservation of mass equation is replaced by a pressure correction equation

for compressible flows and thus incremental pressure is solved for instead

of density. The turbulence is described by a multiple-time-scale turbulence

model supplemented with a near-wall turbulence model. The present numerical

results show that there exists a reversed flow region at all free stream

Mach numbers considered whereas various k-c turbulence models fail to

predict such a reversed flow region at low free stream Mach numbers. The

numerical results also show that the size of the reversed flow region grows

extensively due to the shock wave - turbulent boundary layer interaction as

the free stream Mach number is increased. These numerical results show that

the turbulence model can resolve the turbulence field subjected to extra

strains caused by the streamline curvature and the shock wave - turbulent

boundary layer interaction and that the numerical method yields a

significantly accurate solution for the complex compressible turbulent

flow.

*Work funded by Space Act Agreement C-99066-G.
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NOMENCLATURE

coefficient for axial velocity correction equation

coefficient for radial velocity correction equation

chord length of axisymmetric bump

turbulence model constants for Cp equation (2=1,3)

turbulence model constants for Et equation (2_I,3)

constant coefficient (=0°09)

wall damping function for eddy viscosity equation

wall damping function for cw equation

turbulent kinetic energy (k=kp + kt)

turbulent kinetic energy of eddies in production range

turbulent kinetic energy of eddies in dissipation range

effective thermal conductivity (=km+ Cp#t/aT)

molecular thermal conductivity

free stream Mach number

free stream velocity

static pressure

stagnation pressure

production rate of turbulent kinetic energy

gas constant

Reynolds number

turbulent Reynolds number (=k2/(V_l))

temperature

time averaged velocities in (x,r) coordinates

friction velocity (-J(rw/p))

Reynolds stress

velocity vector (={u,v})
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akp

akt

aT

a_p
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Superscripts

F

axial and radial coordinates

radial distance from the wall

wall coordinate (=ury/u)

energy transfer rate of turbulent kinetic energy

dissipation rate of turbulent kinetic energy

dissipation rate of turbulent kinetic energy

dissipation rate inside the near-wall layer

von Karman constant (=0.41)

molecular viscosity

effective viscosity (=_+#t)

turbulent viscosity

kinematic viscosity of fluid

turbulent eddy viscosity

density

turbulent Prandtl number for kp equation

turbulent Prandtl number for k t equations

turbulent Prandtl number for energy equation

turbulent Prandtl number for Cp equation

turbulent Prandtl number for _t equation

wall shearing stress

dissipation function for energy equation

current value

incremental (or corrective) value

Mathematical symbol

summation
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INTRODUCTION

The transonic flow over an axisymmetric curved hill [i] has received

considerable attention in recent years as a bench mark test case to assess

the capability of numerical methods as well as turbulence models to be used

as design/analysis tools for fluid machinery. The transonic flow is

schematically shownin Fig. i. The boundary layer flow approaching the

curved hill is subjected to an extra meanflow strain rate generated by the

streamline curvature. The development of the viscous force on the wall

depends on the extra meanflow strain rate. As the fluid particle travels

along the wall, the meanmomentumis dissipated by the strong viscous force

and the flow eventually separates. As the free stream Machnumber is

further increased, a supersonic pocket is formed in the top region of the

curved hill. As the strength of the shock wave is increased with the

increasing free stream Machnumber, the reversed flow region grows

extensively due to the shock wave - boundary layer interaction. In

numerical calculations of the transonic flow, correct prediction of the

flow depends on the capability of a numerical method to resolve the

compressible flow field which includes a supersonic flow region and a low

Machnumberreversed flow region and the capability of a turbulence model

to properly resolve the turbulence field subjected to extra strain rates

caused by the streamline curvature and the shock wave -boundary layer

interaction. In this paper, calculations of the transonic flow at various

free stream Machnumbersare madeusing a newly developed numerical method

[2] and a multiple-time-scale turbulence model (hereafter abbreviated as

the M-S turbulence model) [3,4]. A numberof turbulence models, ranging

from algebraic turbulence models to two-equation turbulence models

incorporating a streamline curvature correction method, have been tested
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and/or proposed in [5-7]. Varying degrees of success have been reported in

these references. The present numerical results are compared with these

numerical results as well as the measured data.

The Navier-Stokes equation solvers based on the pressure correction

methods, also known as SIMPLE algorithms [8,9], are mostly used to solve

incompressible flows the domain of which can be discretized by an

orthogonal mesh. Due to their strongly convergent nature, pressure

correction methods have been used extensively to solve complex turbulent

flows including chemically reacting turbulent flows. In the numerical

method used herein, the pressure correction method has been extended to

solve incompressible as well as compressible flows with arbitrary, complex

geometries. The compressible flow equations are mostly solved by

approximate factorization methods and flux splitting methods. The

Beam-Warming method [I0] and the MacCormack method [ii] are representatives

of the approximate factorization methods and the Steiger-Warming method

[12] is a representative of the flux-splitting methods. These methods were

originally developed to solve the Euler equations and were then extended to

include the viscous term to solve the Navier-Stokes equations. A few

differences exist between the two classes of methods. In the latter class

of methods, the density is solved for as a primary variable and the

pressure is obtained from the equation state. For incompressible flows, the

pressure no longer depends on the density and hence the latter class of

methods fails for incompressible flows. These methods can also be extended

to solve incompressible flows by including an artificial compressibility

into the governing flow equations [13]. On the other hand, in the pressure

correction methods, the incremental pressure is solved for as a primary

variable, hence the method is valid for both incompressible and



compressible flows. Another difference between the two classes of methods

can be found in the way the second order diffusion term is treated. In the

pressure correction methods, the diffusion term is incorporated into the

stiffness matrix while, in the other class of methods, the diffusion term

is incorporated into the system of equations as the load vector term. For

turbulent flows with extensive recirculation zones, the pressure correction

methods maybe numerically more stable than the other class of methods,

conceptually; however, the pressure correction methods have mostly been

used for incompressible flows and the approximate factorization methods and

the flux splitting methods have mostly been used for compressible flows.

Therefore, definitive advantages and disadvantages of these two classes of

methods can not be discussed with confidence as yet.

A few papers to extend the SIMPLEmethod to solve compressible flows

with complex geometries have appeared in recent years [14-16]. Some

difficulties have been encountered in the course of these studies. One

difficulty was identifying a suitable grid layout to solve the

Navler-Stokes equations defined on complex geometries. In [14], a

collocated grid layout was used and an artificial dissipation was included

to prevent velocity-pressure decoupling. In the present numerical method

and in [16], the velocities are located at the samegrid points and the

pressure is located at the centroid of pressure control volume formed by

the four adjacent velocity grid points. This grid layout mayyield a

velocity-pressure decoupled solution if used together with the standard

pressure correction procedure [17]. The mechanismthat leads to the

velocity-pressure decoupied soiution is heuristically shownin [18]. In

[14], the velocity-pressure decoupling was eliminated by using a

non-conforming control-volume for massimbalance calculation. In this case,
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an uncertainty caused by the use of a non-conforming domain for the mass

imbalance calculation needs to be further investigated. In the present

numerical method, the velocity-pressure decoupling is eliminated by

treating the pressure correction equation as a standard partial

differential equation rather than treating it as a constraint condition.

Further details are discussed in the following section. Another difficulty

was to find a simple, yet strongly convergent, pressure correction equation

valid for both incompressible and compressible flows. The capability to

solve compressible flows is achieved by including a convective pressure

correction term into the disturbed conservation of mass equation in one

form or another. However, the numerical procedures to solve each

compressible form pressure correction equation differ significantly from

each other. A multi-step pressure correction algorithm was used in [14],

and the SIMPLE-R [8] and the SIMPLE-C [19] were used in [15] and [16],

respectively. In these methods, the density was also corrected from the

incremental pressure. In the present method, only the pressure and the

velocity are corrected from the incremental pressure and the density is

obtained from the equation of state. Thus the present method is simpler

than the other methods, and the multi-step pressure correction algorithm

[14] is more involved than the other methods considered herein. The

accuracy and the convergence nature of the present numerical method has

been tested by solving a number of example flows. The example flows

considered in [2] include: a developing channel flow, a developing pipe

flow, a two-dlmenslonal laminar flow in a 90 degree bent channel, polar

cavity flows, and a turbulent supersonic flow over a compression ramp. More

calculations of various complex turbulent flows using the same numerical

method can be found in [20-22]. It can be seen from these numerical results



that the present numerical methodyields accurate computational results

even whenhighly skewed, unequally spaced, curved grids are used.

It has long been knownthat the turbulent transport is related to the

time scale of energy containing large eddies and the dissipation of

turbulent kinetic energy is related to the time scale of fine scale eddies

in the dissipation range [23]. In M-S turbulence models, the turbulent

transport of massand momentumis described using the time scale of the

large eddies and the dissipation rate is described using the time scale of

the fine-scale eddies. Due to the physically consistent nature of the M-S

turbulence models, these turbulence models are expected to yield

significantly improved computational results comparedwith the

single-time-scale turbulence models. However, the first M-S turbulence

model [24] did not quite comeup to the expectations due to a few

shortcomings in the closure model. These shortcomings and a few differences

between the two M-S turbulence models are discussed in the following

section for the record. On the other hand, the present M-S turbulence model

yields significantly improved computational results than the

single-time-scale turbulence models for a numberof complex turbulent flows

[3,20,21]. These complex turbulent flows include= a wall-jet, a

wake-boundary layer interaction flow, a turbulent flow over a

backward-facing step, a confined coaxial swirling jet, turbulent flows over

a strongly curved surface, and reattaching shear layers in a divergent

channel. Calculation of more complex turbulent flows are in progress.

In numerical calculations of turbulent flows, the near-wall turbulence

is usually described using the wall functions [25], two- or multi-layer

turbulence models [26,27], and low Reynolds number turbulence models [28].

In the present study, the near-wall turbulence is described by a "partially

8



low Reynolds number approach" [4]. In this near-wall turbulence model, only

the turbulent kinetic energy equations are extended to include the

near-wall low turbulence region and the energy transfer rate and the

dissipation rate inside the near-wall layer are obtained from algebraic

equations. The algebraic equations were obtained from a k-equation

turbulence model [29]. The advantages of the present near-wall turbulence

model over the low Reynolds number turbulence models can be described as

follows. The turbulence length scale of boundary layer flows is strongly

related to the normal distance from the wall. This characteristic of the

wall bounded turbulent flows can be described quite naturally by empirical

algebraic equations. The low Reynolds number turbulence models can also be

used to describe the wall bounded turbulent flows; however, more grid

points have to be used to resolve the steep dissipation rate in the

near-wall region. More detailed discussion on the advantages and

disadvantages of various near-wall turbulence models, the development of

the present near-wall turbulence model, and its application to fully

developed turbulent channel and pipe flows can be found in [4]. It is also

shown in [4] that the near-wall turbulence model can resolve the over-shoot

phenomena of the turbulent kinetic energy and the dissipation rate in the

region very close to the wall. Incorporation of the near-wall turbulence

model into a k-_ turbulence model and its application to complex turbulent

flows such as a supersonic turbulent flow over a compression ramp and a

transonic flow over an axisymmetric curved hill can be found in [2] and

[22], respectively.

REYNOLDS AVERAGED NAVIER-STOKES EQUATIONS AND NUMERICAL METHOD

The compressible turbulent flow equations are given as;
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([a 2all2- 2 + 2 + 2 + + - (v'V) 2,

3

Ou i a(rv)

v.V---+

ax r ar

and the density is obtained from the perfect gas law given as p=pRT. A

turbulent Prandtl number (aT) of 0.75 was used for the energy equation. The

molecular viscosity and the thermal conductivity were obtained from

Sutherland's laws given as [30];

[ oI+ (5)

where #o - 1.716 x 10 .5 Kg/m-sec, T o - 273.1 ° Kelvin, S - 110.6 ° Kelvin;

and

ko lToJ lT + sJ

(6)

where ko - 0.0264 Kg/m-K, T o - 273.1 ° Kelvin, and S - 194.4 ° Kelvin.

The specific heat was obtained from a curve-fitted 4-th order polynomial,

see [31] for details.

The pressure correction equation valid for both incompressible and

compressible flows is described below. As in the standard pressure

correction method, the density, the velocity, and the pressure are

decomposed as;
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* p,p - p + (7)

* U Fu - u + , (8)

* V'v - v + , (9)

* p,p - p + (lO)

Substituting eqs. (7-9) into eq. (I) yields:

v.(p'v*) + V.(p*V') + V.(p'V') - --v.(p*v*) (II)

The third term on the left hand side of eq. (Ii) is neglected for

simplicity in any of the pressure correction algorithms discussed below.

The incremental pressure is related to the incremental density and the

incremental velocities as;

p' = p'RT (12)

ap'

u' - - Au --
ax

(13)

ap'

v' - --A v -- (14)

ay

where eq. (12) is obtained from the equation of state and eqs. (13-14) are

obtained from the discrete u- and v-momentum equations, respectively,

Substituting eqs. (12-14) into (ii) yields, after some rearrangement;

f],a[v,]af.8 U'p, + ___ r_TP' _-_ _or =l__u_]
12

1 8 [._ , ap'] (p'V*)

r ar[_ Av_-r ] = - _7. (15)



In the present numerical method, all flow variables, except pressure,

are located at the samegrid points and the pressure is located at the

centroid of the cell formed by the four neighboring grid points. A few

remarks on the pressure correction algorithm are in order for clarity. In

the more standard pressure correction algorithms, the discrete pressure

correction equation is obtained by directly substituting the discrete form

incremental pressure - incremental velocity relations, eqs. (13-14), into

eq. (ii). In this case, the discrete pressure correction equation for a

pressure grid point is given as a nlne-diagonal system of equations for

rectangular grids. This pressure correction equation can yield a

velocity-pressure decoupled solution as discussed in [17,18]. Also this

pressure correction equation is not diagonally dominant. On the other hand,

in the present method, the continuous form pressure correction equation,

given as eq. (15), is solved for incremental pressure. In this case, the

discrete pressure correction equation is given as a five-diagonal system of

equations for rectangular grids. This discrete pressure correction equation

is strongly diagonally dominant even for highly skewedgrids. Even the

slightest symptomof velocity-pressure decoupllng is not observed with the

present pressure correction algorithm.

The capability to solve compressible flows with shock waves is

achieved by the convective incremental pressure terms, the first two terms

in the left hand side of eq. (15). These two terms properly take into

account the hyperbolic nature of supersonic flows, and enable the capture

of shock waves. In low Machnumberflows and in the near-wall boundary

layers of supersonic flows, the variation of density mostly depends on the

local temperature. However, the dependenceof density on temperature
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has been ignored in deriving the convective terms for simplicity, see eq.

(12). Yet, the dependence of density on temperature is clearly resolved in

the present numerical method, since the incremental pressure is driven only

by the mass imbalance evaluated from the conservation of mass, the right

hand side of eq. (15), and the density is obtained from the equation of

state. In fact, it can be seen in [32] that low Mach number flows can be

solved even without the convective incremental pressure terms. Equally

importantly, use of the simplified incremental pressure -incremental

density relationship still yields a rapidly convergent solution as shown in

the following section. Also note that the present pressure correction

algorithm is significantly simpler than the multi-step pressure correction

algorithm [14].

In solving the system of equations, the power-law upwinding [8] is

used for all convection-diffuslon equations except for the pressure

correction equation. The upwind differencing [8] is used for the pressure

correction equation. In the region very close to the wall, highly fine

grids need to be used to resolve the thin boundary layer properly. In this

region, the numerical method is second order accurate; however, the method

becomes first order accurate in the free stream region where the mesh is

coarse. Each differential equation is solved Sequentially until the

relative error for each flow variable becomes smaller than the prescribed

convergence criterion and the mass imbalance in eq. (15) becomes

negligible. The incremental pressure is obtained by solving eq. (15). In

solving the discrete system of equations, the off-diagonal terms may be

moved to the load vector term and the resulting system of equations can be

solved using a tri-diagonal matrix algorithm (TDMA). The corresponding

incremental velocities are obtained from eqs. (13-14). The flow variables
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are updated using eqs. (8-10), and these updated flow variables are used in

computing the new current flow variables by solving eqs. (2-4) and the

turbulence equations.

TURBULENCE EQUATIONS

The M-S turbulence model supplemented with the near-wall turbulence

model is summarized below for completeness. The turbulent kinetic energy

and the energy transfer rate equations for the energy containing large

eddies are given as;

O I 0 a #t akp) I a #t Okp
--(pukp) +----(rpvkp) ----((_+--) .... {re#+--)--) - pPr -pep

Ox r ar Ox akp ax r ar akp ar

(16)

0 10 a #t a_p} 1 o #t aCp}
--(pUep) + ----(rpvep) ----{(#+--) .... {r(#+--)--

Ox r Or Ox a(p ax r Or O_p Or

Pr 2 Prep ep2

- pCpl-- + pCp2-- - pCp3--

kp kp kp

(17)

where Pr=vt_ is the production rate. The turbulent kinetic energy equation

and the dissipation rate equation for the fine scale eddies are given as:

a

--(pukt) + ----
ax

i a o #t akt i a #t akt

(rpvkt) ----{(#+--)--) ------{re#+--)--} - pep -pe t

r Or ax akt ax r Or akt Or

(18)

0 10

--(Puet) +----(rpvet)
ax r Or

O #t Oct 1 O #t act
----1(#+--)--1 (r(#+--)--)

ax a_t ax r ar act Or

2 2
ep epet et

- pCtl-- + pct2-- - Pct3--

kt kt k t

(19)
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The eddy viscosity is given as;

k2

_t - pc#f--
_p

(20)

The turbulent kinetic energy equations, eqs. (16) and (18), are defined for

the entire flow domainwhile the energy transfer rate equation, the

dissipation rate equation and the eddy viscosity equation are valid for the

flow domain away from the near-wall region. The turbulence model constants

are given as; akp-0.75, akt=0.75, a_p-l.15, a_t-l.15, Cpl_0.21, Cp2-1.24,

Cp31 1.84, cti=0.29, ct2 = 1.28, and ct3-1.66. Details on the present M-S

turbulence model can be found in [3].

The energy transfer rate and the dissipation rate inside the near-wall

layer are given as;

where

_p - _t--
f_

c#f3/4k3/2

_y

f_ - I-- exp(-A_R t)

k2

R t ---

c_f 3/2

A_
2_ 2

(21)

(22)
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and the eddy viscosity for the near-wall layer is given as;

k2
v t - cpf fp-- (23)

E1

where f_-l-l./exp(AiJR t + A2Rt2). The coefficients A 1 and A 2 are given as

0.025 and 0.00001, respectively, see [4].

The domain for each differential equation is shown schematically in

Figure 2. For wall bounded turbulent flows, the equilibrium region extends

from y+=30 to y+=300. Thus the partition between the near-wall region and

the fully turbulent outer region can be located between y+ greater than 30

and less than 300 approximately. Recall that the present near-wall

turbulence model and the k-equation turbulence model [29] from which the

present near-wall turbulence model is derived are valid for the entire flow

domain of equilibrium boundary layer flows. Thus the computational results

do not depend appreciably on the location of the partition. However, if the

partition is located too far away from the wall (i.e., y+>1000), then the

numerical results in the near-wall region may become similar to those

obtained using a k-equatlon turbulence model.

A few differences between the present M-S turbulence model and that of

[24] are summarized in this paper for the record. Firstly, the eddy

viscosity equation in [24] is given as;

kkp

vt - cpf--

_p

(24)

Numerical calculations of complex turbulent flows showed that the ratio of

kt/k p can vary significantly in regions where the turbulence is in a
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strongly inequilibrium state. Eq. (24) implies that the small scale eddies

contained in the dissipation range may not contribute significantly to the

turbulent transport of massand momentum.This anomaly can be cured if the

partition between the large eddies and the small eddies is movedtoward the

very high wave numberregion so that the kt maybe negligibly small in all

occasions. However, in this case, the multiple-time-scale turbulence model

can be reduced to a slngle-time-scale turbulence model as discussed in

[24]. Secondly, in the present M-S turbulence model, the variable energy

transfer functions were obtained from a physical dimensional analysis [30].

On the other hand, the M°S turbulence model in [24] contains such a

variable energy transfer function only in the energy transfer rate

equation. Hence the load functions of the energy transfer rate equation and

the dissipation rate equation lack symmetry. Thirdly, in the present M-S

turbulence model, the model constants were obtained by solving a five by

five system of equations obtained by transforming the M-S turbulence

equations into asymptotic equations for the decay rate of grid turbulence

[33] and the growth rate of turbulence intensity [34]. Lastly, of practical

importance, the eddy viscosity equation given as eq. (24) is inconsistent

with the near wall analysis unless kt vanishes in the near-wall equilibrium

region, see [3]. In application to complex turbulent flows, arbitrary

ratios of kt/_ were used as a near wall boundary condition together with

the standard wall functions [24,35]. A wall function for the M-S turbulence

model obtained from a near-wall analysis is given in [3], if any wall

function need to be used. Also an arbitrary ratio of kt/k p was used as an

inlet boundary condition in a numberof boundary layer calculations [35].

In this case, the calculated shear layer expands rapidly so that the

turbulence field can adjust itself to the ill-posed inlet boundary
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condition, see [3].

COMPUTATIONALRESULTS

The measureddata for the transonic flow over an axisymmetric curved

hill at various free stream Machnumberscan be found in [1,5,36]. In the

experiment, an axlsymmetric circular-arc bumpof thickness 1.9 cm and a

chord length of 20.3 cmwas attached 60 cmdownstreamof a circular

cylinder with the external diameter of 15.2 cm. The numerical results for

M_=0.875and Re-13.2xlO6/m are comparedwith the measureddata presented in

[36]. The boundary layer thickness of the approaching transonic flow was

0.01 meters for M_=0.875. The other numerical results for the rest of the

free stream Machnumbersat Re=lOxlO6/mare comparedwith the measureddata

given in [5].

In the following calculations, the inlet boundary is located at one
p

chord length upstream of the forward corner of the bump_ and the exit

boundary, at one chord length downstream of the rear end of the bump. Some

degree of uncertainty that may be caused by numerical diffusion and

inadequate grid size can always exist in any numerical analysis. To reduce

the numerical uncertainty, three different meshes (78x53, i08x65, and

145x65 grid points in the axial and radial directions, respectively) have

been used in the present study. The computational results obtained using

the first two grids differed by no more than a few percent; and the latter

two, by no more than one percent. The computational results presented

herein were obtained using the finest grid shown in Figure 3. The inlet

boundary condition for the axial velocity and the turbulent kinetic energy

were obtained from experimental data for a fully developed flat plate flow

[37]. The non-dimensional velocity and the turbulent kinetic energy
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profiles were scaled to yield a boundary layer thickness of 0.01 meters at

the inlet boundary. Uniform static pressure and uniform enthalpy were also

prescribed at the inlet boundary. The no-slip boundary condition for

velocities, a vanishing turbulent kinetic energy, and a constant

temperature which corresponds to the free stream stagnation temperature

were prescribed at the solid wall boundary. The free stream flow condition

was prescribed at the top boundary, and a vanishing gradient boundary

condition was used for all flow variables at the exit boundary. The

partition between the near-wall layer and the external region was located

at approximately one percent of the boundary layer thickness away from the

wall. Thus the partition is located at y+=80 (for M_=0.875) at the inlet

boundary and Ii grid points were allocated inside the near-wall layer. The

meshsize of the first grid point on the bottom wall was Ay+=l.25 and the

grid size in the normal to the wall direction was increased by a factor of

approximately 1.15. The initial guess was obtained by extending the inlet

boundary condition in the axial direction. An uncertainty that can be

caused by the location of the inlet boundary and the inlet boundary

conditions is clarified by comparing the numerical results with the

measureddata at x/c--0.25.

The convergence history for M_-0.875 is shownin Figure 4. Each

iteration consists of 7 sweepsof the pressure correction equation and 3

sweepsfor the rest of the flow equations in the axial and in the radial

directions, respectively. The pressure was updated using an

under-relaxation factor of 0.57; and the rest of the flow variables, using

an under-relaxation factor of 0.47. The relative error for each flow

variable shownin Figure 4(a) is defined as;
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Ri - Max{l(an+li,j " ai,jn )/An+lli ' J=I,N}
(25)

where the superscript n denotes the iteration level; the subscript

i={u,v,p,T} denotes each flow variable; the subscript j denotes each grid

point; N denotes the total number of degrees of freedom for each flow

variable; and A i denotes the maximum magnitude of the i-th flow variable.

The convergence histories for the other scalar variables (kp, _p, kt, and

_t) are almost the same as that of temperature. The mass imbalance shown in

Figure 4(b) is defined as;

R 2 = IIN c [ __c{v.(pV)}2c]

c=l

(26)

where N c is the total number of the pressure control volumes. The

"practically" converged solution was obtained in approximately i000

iterations for all the free stream Mach numbers considered. Note that, in

control-volume based finite difference methods, the discrete system of

equations is derived by integrating the governing differential equations

over each control volume. For curvilinear grids, the required number of

interpolations to obtain flow variables at the cell boundaries is

significantly reduced by using the present grid layout than the one used in

[18]. The strongly convergent nature of the present numerical method is

partly attributed to the grid layout which required fewer interpolations

and the pressure correction algorithm which yields a diagonally dominant

system Of equations even when highly skewed meshes are used. It can also be

found in Figure 4(b) that the mass imbalance converges almost

monotonically. Such a monotonically convergent nature is attributed to the

use of the under-relaxation. With the use of these under-relaxation
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parameters, divergence or convergence to an erroneous solution was not

encountered.

The calculated iso-Mach lines are shown in Figure 5, where the

incremental Mach number between the contour lines is constant for each free

stream Mach number. It can be seen in this figure that a small supersonic

pocket first appears at M_-0.80. The iso-Mach lines are almost symmetric at

low free stream Mach numbers and the symmetry is lost as the size of the

supersonic pocket grows with the increasing free stream Mach number. It can

be seen from these figures that the present numerical method can cleanly

resolve the transonic flows from the low to the high transonic free stream

Mach number. The size of the supersonic pocket for M_-0.925 also compares

favorably with that obtained using the MacCormack scheme [5]. The

calculated shock is slightly more spread out than that of [5] since the

present numerical method becomes first order accurate in the free stream

region where coarse grids are used. However, the slightly smeared shock

does not impair the numerical results appreciably as can be seen in this

section.

The calculated static pressure distributions on the wall are compared

with the measured data as well as the other numerical results in Figure 6.

It can be seen in the figure that the pressure distributions on the wall

obtained by the MacCormack scheme using the King-Johnson algebraic

turbulence model [5] (hereafter abbreviated as K-J mode I ) compare most

favorably with the measured data. The present numerical results show that

the calculated shocks are located somewhat downstream of the measured data

for all free stream Mach numbers. This discrepancy is attributed to the

turbulence model which slightly under-estimates the Reynolds stress. For

M_=0.875, the present result compares more favorably with the measured data
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than does the one obtained by the MacCormack scheme using the

Wilcox-Rubesin Turbulence model (hereafter, abbreviated as W-R model) [7].

However, it can be found in [6] that the W-R model yields substantially

improved numerical results for the wall pressure and the mean velocity if

the free stream condition is prescribed at the outer boundary.

The streamline and the pressure contour lines for M_-0.875 are shown

in Figures 7(a) and 7(b), respectively. These contour lines also indicate

that the present numerical method can cleanly resolve the transonic

turbulent flow.

The calculated separation and reattachment locations are compared with

the measured data and the other numerical results in Figure 8. It is shown

in this figure that the present method successfully predicts the existence

of the reversed flow region at all free stream Mach numbers. At low free

stream Mach numbers, the present results compare more favorably with the

measured data than do those obtained by the MacCormack scheme using the K-J

turbulence model [5]. As the free stream Mach number is increased, the

present method slightly under-predicts the size of the reversed flow region

compared with the measured data and the numerical results obtained using

the K-J turbulence model. This under-prediction of the reversed flow region

is a result of the calculated shocks located slightly downstream of the

measured data. It is also shown in this figure that the Jones-Launder k-_

turbulence model [5] and a k-_ turbulence model supplemented with a

streamline curvature correction method [6] fail to predict the reversed

flow region at low free stream Mach numbers. These turbulence models also

under-predict the reattachment locations at high free stream Mach numbers

as shown in the figure.

The mean velocity profiles for M_-0.875 at five axial locations are
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compared with the measured data as well as the other numerical results in

Figure 9. At x/c--0.25, the calculated mean velocity profile and the

measured data compare favorably with each other, which indicates that the

inlet boundary condition used in the present study is a good approximation

to the experiment at the inlet boundary. It can be seen in the figure that

all numerical results exhibit fair comparison with the measured data. In

particular, the mean velocity profile obtained using the W-R turbulence

model [7] compares less favorably with the measured data than the other

numerical results. Again, it can be found in [6] that the W-R model yields

an improved mean velocity profile if the free stream condition is

prescribed at the outer boundary. It is also shown in the figure that a k-_

turbulence model incorporating an improved wall function [25]

under-predicts the magnitude of mean velocity at x/c=0.75 and 0.875 [39].

This under-prediction in the mean velocity is caused by the over-predicted

Reynolds stress at the same axial locations.

The Reynolds stress profiles for M_=0.875 at five axial locations are

shown in Figure i0. It can be seen in the figure that the calculated and

the measured Reynolds stress profiles at x/c--0.25 compare favorably with

each other, which, again, indicates that the inlet boundary condition used

in the present study is a good approximation to the experiment at the inlet

boundary. At low free stream Mach numbers for which the shock wave

-boundary layer interaction do not exist, the flow separation is caused by

the turbulent shear stress developing over the forward part of the curved

hill [38]. A successful prediction of such a flow depends on the capability

of a turbulence model to correctly describe the turbulence field subjected

to the streamline curvature [20]. As shown in this figure, the present

numerical results compare more favorably with the measured Reynolds stress
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than the other numerical results at x/c-0.69 and 0.75. However, the

magnitude of the present numerical results is slightly smaller than the

measureddata at these locations. The calculated shocks and separation

points are located slightly downstreamof the measureddata at high free

stream Machnumbers, which is attributed to the slightly under-predicted

Reynolds stress in the forward part of the curved hill. It is also shown in

the figure that the k-_ turbulence model with an improved wall function

[39] significantly over-estimates the Reynolds stress at x/c=0.75. Inside

the reversed flow region, x/c-l.0, the present numerical result compares

less favorably with the measured data than does the one obtained using the

K-J turbulence model. This under-prediction in the magnitude of the

Reynolds stress is attributed to the calculated shock and the separation

point which are located slightly downstream of the measured data. It is

also shown in the figure that the Reynolds stress profile at x/c_1.38

obtained using a modified K-J turbulence model, with the modifications

restricted to the reversed flow region, compares more favorably with the

measured data than other numerical results. However, this model is shown to

over-predict the Reynolds stress near the outer edgs of the reversed flow

region.

In the course of the development of the present numerical method, the

same transonic flow at M_=0.875 has been solved using a k-_ turbulence

model supplemented with the same near-wall turbulence model as used in the

present study. The k-_ turbulence model [22] also successfully predicted

the existence of the reversed flow region at all free stream Mach numbers.

However, the size of the reversed flow region for each free stream Mach

number was approximately i0 percent smaller than the present result. The

smaller size of the reversed flow region is due to the incapability of k-_
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turbulence models to resolve turbulence fields in strongly inequilibrium

state such as that inside the reversed flow region. The turbulent kinetic

energy obtained using the present M-S turbulence model is almost the same

as that obtained using the k-_ turbulence model. Both turbulence models

significantly under-predicted the turbulent kinetic energy, see [22] for

more details.

CONCLUSIONS

Calculations of turbulent transonic flows with a control-volume method

based on a pressure correction method were presented. The turbulence was

described by a multiple-time-scale turbulence model supplemented with a

"partially low Reynolds number" near-wall turbulence model.

The numerical results showedthat the supersonic pocket on the top of

the curved hill first appeared at the free stream Machnumberof 0.80 and

that the supersonic pocket becamelarger as the free stream Machnumberwas

further increased. The numerical results also showedthat there exists a

reversed flow region at low free stream Machnumbersand that the size of

the reversed flow region grows extensively as the free stream Machnumber

is increased. Thus the numerical method was shownto yield a significantly

accurate solution for the complex compressible turbulent flow including the

supersonic pocket and the nearly incompressible low Mach number reversed

flow region.

For turbulent flows over a curved hill, the mean flow is subjected to

extra strains caused by the streamline curvature. The development of the

turbulence field over such a curved surface mostly depends on the extra

strains. The capability to predict the reversed flow region in turbulent

flows over a curved hill rests on the capability of a turbulence model to
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properly resolve the turbulence field. It was shown that the present

turbulence model can predict the reversed flow region at low free stream

Mach numbers while the Jones-Launder k-c turbulence model and a k-_

turbulence model supplemented with a streamline curvature correction method

fall to predict the reversed flow region [5,6]. The present numerical

results also show the extensive growth of the reversed flow region caused

by the shock wave turbulent boundary layer interaction at high free

stream Mach numbers. These numerical result compare favorably with the

measured data and the other numerical results obtained using the

King-Johnson turbulence model [5].

27



REFERENCES

I. W. D. Bachalo and D. A. Johnson, "An Investigation of Transonic

Turbulent Boundary Layer Separation Generated on an Axisymmetrlc Flow

Model," AIAA Paper 79-1479, 1979.

2. S.-W. Kim, "A Control-Volume Based Reynolds Averaged Navler-Stokes

Equation Solver Valid at All Flow Velocities," NASA TM-I01488, 1989.

3. S.-W. Kim and C.-P. Chen, "A Multiple-Time-Scale Turbulence model

Based on Variable Partitioning of the Turbulent Kinetic Energy

Spectrum", Numer. Heat Transfer, Part B, vol. 16, pp. 193-211, 1989.

Also available as NASA CR-179222, 1988.

4. S.-W. Kim, "A Near-Wall Turbulence Model and Its Application to Fully

Developed Turbulent Channel and Pipe Flows," To appear in Numer. Heat

Transfer, 1990. Also available as NASA TM-I01399, 1988.

5. D. A. Johnson, "Transonic Separated Flow Prediction with an

Eddy-Viscosity/Reynolds-Stress Closure Model," J AIAA, vol. 25,

pp. 252-259, 1987.

6. C. C. Horstman and D. A. Johnson, "Prediction of Transonic Separated

Flows," J. AIAA, vol. 22, No. 7, pp. 1001-1003, 1984.

7. D. A. Johnson, C. C. Horstman and W. D. Bachalo, "Comparison Between

Experiment and Prediction for a TransonlcTurbulent Separated Flow,"

J, AIAA, vol. 20, pp. 737-744, 1982.

8. S. V. Patankar, Numerical _a_ Transfer and Fluid Flow, McGraw-Hill,

New York, 1980.

9. A. D. Gosman and F. J. K. Iderlah, "TEACH -T," Department of Mechanical

Engineering, Imperial College, London, 1982.

i0. R. M. Beam and R. F. Warming, "An Implicit Factored Scheme for the

Compressible Navier-Stokes Equations," J, AIAA, vol. 16, pp. 393-402,

28



1978.

ii. R. W. MacCormack, "A Numerical Method for Solving the Equations of

Compressible Viscous Flow," J, AIAA, vol. 20, pp. 1275-1281, 1982.

12. J. L. Steiger and R. F. Warming, HFlux-Splltting of the Invicid

Gasdynamlc Equations with Application to Finite Difference Method," J.

Comput_ Physics, vol. 40, pp. 263-293, 1981.

13. S. E. Rogers, D. Kwak, and J. L. C. Chang, "INS3D ° An Incompressible

Navier-Stokes Code in Generalized Three-Dimenslonal Coordinates," NASA

TM-100012, 1987.

14. C. M. Rhie, "A Pressure Based Navler-Stokes Solver Using the Multi-Grid

Method," AIAA 24th Aerospace Sciences Meeting, AIAA-86-0207, 1986.

15. K. C. Karki, and S. V. Patankar, "A Pressure Based Calculation

Procedure for Viscous Flows at All Speeds in Arbitrary Configurations,"

AIAA Paper 88-0058, 1988.

16. Y.-S. Chen, "Viscous Flow Computations Using a Second-Order Upwind

Differencing Scheme," AIAA Paper 88-0417, 1988.

17. S. P. Vanka, B. C. J. Chen and W. T. Sha, "A Semi Implicit Calculation

Procedure for Flows Described in Boundary Fitted Coordinate System,"

_um_r, Heat Transfer, vol. 3, pp. 1-19, 1980.

18. C° R. Maliska and G. D. Ralthby, "A Method for Computing Three

Dimensional Flows Using Non-Orthogonal Boundary-Fitted Coordinates,"

_nt, J, Numer, M_th, Fluids, vol. 4, pp. 519-537, 1984.

19. G. D. Raithby and G. E. Schneider, "Numerical Solution of Problems in

Incompressible Fluid Flow: Treatment of the Velocity-Pressure

Coupling," NumerT Heat Transfer, vol. 2, p. 417, 1979.

20. S.-W. Kim, "Numerical Investigation of an Internal Layer in Turbulent

Flow over a Curved Hill," NASA TM-I02230, 1989.

29



21. S.-W. Kim, "Calculation of Reattachlng Shear Layers in Divergent

Channel with a Multiple-Time-Scale Turbulence Model," AIAA Paper

90-0047, 1990.

22. S.-W. Kim, "Numerical Computation of Shock Wave Turbulent Boundary

Layer Interaction in Transonic Flow over an Axisymmetric Curved Hill,"

NASA TM-I01473, 1989.

23. J. L. Lumley, "Turbulence Modelling," ASME J. Applled Mechanics, vol.

50, pp. 1097-1103, 1983.

24. K. HanJelic, B. E. Launder, and R. Schiestel, "Multiple-Time-Scale

Concepts in Turbulent Shear Flows" in L. J. S. Bradbury, F. Durst,

B. E. Launder, F. W. Schmidt, and J. H. Whitelaw, (eds.), Turbulent

Shear Flows, vol. 2, pp. 36-49, Springer-Verlag, New York, 1980.

25. Viegas, J. R., Rubesin, M. W., and Horstman, C. C,, "On the Use of Wall

Functions as Boundary Conditions for Two-Dimensional Separated

Compressible Flows," AIAA Paper 85-0180, 1985.

26. J. J. Gorski, "A New Near-Wall Formulation for the k-_ Equations of

Turbulence," AIAA Paper 86-0556, 1986.

27. R. S. Amano, "Development of a Turbulent Near-Wall Model and Its

Application to Separated and Reattached Flows," Numerical Heat

Transfer, vol. 7, pp. 59-75, 1984.

28. V. C. Patel, W. Rodi and G. Scheuerer, "Turbulence Models for Near

Wall and Low Reynolds Number Flows: A Review", J, AIAA, 23,

pp. 1308-1319 (1985).

29. M. Wolfshtein, "The Velocity and Temperature Distribution in

One-Dimensional Flow with Turbulence Augmentation and Pressure

Gradient," Int, J. Heat and Mass Transfer, vol. 12, pp. 301-318, 1969.

30. F. M. White, Viscous Fluid Flow, McGraw-Hill, New York, 1974.

30



31. M. J. Zucrow and J. D. Hoffman, Gas Dynamics, vol. I, John Wiley &

Sons, New York, 1976.

32. R. I. Issa, A. D. Gosman, and A. P. Watkins, "The Computation of

Compressible and Incompressible Recirculating Flows by a Non-Iterative

Implicit Scheme," J, Comput, Phys$¢s, vol. 62, pp. 66-82, 1986.

33. F. H. Harlow and P. I. Nakayama, "Transport of Turbulence Energy Decay

Rate," Los Alamos Sci. Lab., LA-3854, 1968.

34. V. G. Harris, J. A. H. Graham, and S. Corrsin, "Further

Experiments in Nearly Homogeneous Turbulent Shear Flow," J. Fluid

Mech., vol. 81, pp. 657-687, 1977.

35. G. Fabris, P. T. Harsha, and R. B. Edelman, "Multiple-Scale Turbulence

Modelling of Boundary Layer Flows for Scramjet Applications," NASA

CR-3433, 1981.

36. S. J. Kline et. al., Eds., The 1980-1981 AFOSR-HTTM Stanford Conference

on Complex Turbulent Flows, vol. 1-3, 1981.

37. P. S. Klebanoff, "Characteristics of Turbulence in a Boundary Layer

with Zero Pressure Gradient," NACA Report 1247, 1955.

38. V. Baskaran, A. J. Smits and P. N. Joubert, "A Turbulent Flow over a

Curved Hill: Part I. Growth of an Internal Boundary Layer, J, Fluid

Mechanics, vol. 182, pp. 47-83, 1987.

39. M. W. Rubesin and J. R. Viegas, "Turbulence Modelling in Transonic

Flow," Transonic Symposium - Theory, Application and Experiment, NASA

Langley Research Center, Hampton, Virginia, April, 1988.

31



/ SUI'I I_SONIC POCKII
I

//_/// I//-SllOiiK

/ r / RlV[llSlI)

// IIDW

I II]IIRE I. - IRANSONIC FIOW OVER AN AXISYI_IEIRI{ CURVEDIII[i .

Ii

Im

ID

ID

u,v,p, T,kT-EQS.

FIGURE 2. - DOMAINFOR EACH PARTIAL OIFF[RENTIAL EOUATION.

FIGURE 3, - DISCRETIZATION OF THE FLOWDOMAIN (l_q X 65 MESH).

32



-2

-3

-4

-5

-6

,, U VELOCITY

-- C, V VELOCITY

' x:>,, o PRESSURE

> <>0""'0._ o TEMPERATURE

_ ",) o MASS IMBALANCE

I I I I
(a) RELATIVE ERRORS.

-lq I [ ] I
400 800 1200 1F:W)O

ITERE

(b) MASS ]Ir_M..ANCE.

FIGURE q. - CONVERGENCEHISTORY,

]
2O0

33



(a) M_ - 0._0.

0.59

(b) F1:e = O.GO,

0.85

/o_o
\

0 75

(c) M_ = 0.80.

FIGURE 5, - I_@&f_f-.HLINES.

34



0.90

O. 95

(e) M_ = 0.90.

O, 95

' 1,O0

o.e5

m_ 0.90 0._5

(r,_ _ _ 0.925.

FIGURE $. _ CON6LLID_-O.

35



O,75

O.50

O.25

0.0

0.0

0.0

O.O

O.O

0.0
-0.5

o MEASURED DATA

PRESENT RESULT

K-J MODEL [5]

...... k-E MODEL WITH A STREAMLINE

CURVATURE CORRECTION [6]

W-R MODEL [7]

(a) M_ = 0.60.

__-

(b) Moo = 0.80.

_ bil _i,_oo92s._

I [ I I
O.O 0.5 1.0 1.5

X/C

FIGURE G. - PRESSURE DISTRIBUTION ON THE WALL.

36



• r.

(a) Moo = 0,875.

0.60

(b) M_ = 0.875.

FIGURE 7, - STREARL[NEAND PRESSURECONTOURS.

37



1.el -- o MEASUREDDATA
----e,--- PRESENTRESULT j/o

K-J MODEL [5] / o
..... JONES-LAUNI_R - MODEL [5] /

----- k-E MODELWITH A STREAMLINE ,Yo/P

CURVATURECORRECTION[6I 9//,,1.2 i
_)/ //

0,8 -- (SEPARATION _

0.G ....... 1__ 1
O._ 0.6 0.8

/_CII flUMl_R

FIGURE 8. - FLOWSEPARATIONAND REATTACHMEN1lOCATIONS.

t.0'

o REASURED DATA

PRESENT RESULT

K-J MODEL [5]

...... k-E WITH AN IMPROVED WALL FUNCTION [391

W-R MODEL [7]

x/c

0.o3 -(a) 0,25.

Y 0"02 fl' I,0.01 _

I 0.oo -
1.0 0,0 0.0

(b) 0.75. (c) 0.875. (d) 1.0. (e) 1.38.

. I
0.0 0.0 1.5

U/UO

FIGURE 9. - MEANVEI OCITY PROFILES.

Y

0.01

0

MODIFIED K-J MDDEL [5]

x/c

0.03 ) 0.25. (b) 0.69,

0.02

o.oo, - _ ....
0.o 0.o

MEASURED DATA

PRESENT RESULT

K-J MODEL [5]

..... k-E W[TH AN IMPROVED WALL FUNCTION 139]

(c)0.75. (d) 1.0.

_,ox,

_x_].Z2-' /'"

(e) 1.38.

0.o 0.0 0.0

-U'V'

FIGURE I0. - REYN_DS STRESS PROFILES,

• I
0.02

38



National Aeronaulics and

Spa_:e Administration

1. Report No. NASA TM-102499

[COMP-90-04

4. Title and Subtitle

Report Documentation Page

2. Government Accession No.

Numerical Investigation of Separated Transonic Turbulent
Flows With a Multiple-Time-Scale Turbulence Model

7. Author(s)

S.-W. Kim

9.

12.

3. Recipienrs Catalog No.

5. Report Date

i15

Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

January 1990

6. Performing Organization Code

8. Performing Organization Report No.

E-5295

10. Work Unit No.

505-62-2 I

11 Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

Supplementary Notes

S.-W. Kim, Institute for Computational Mechanics in Propulsion, Lewis Research Center (work funded by

Space Act Agreement C-99066-G). Space Act Monitor: Louis A. Povinelli.

16. Abstract

Numerical investigation of transonic turbulent flows separated by streamline curvature and shock wave--boundary

layer interaction is presented. The free stream Mach numbers considered are 0.4, 0.5, 0.6, 0.7, 0.8, 0.825,
0.85, 0.875, 0.90, and 0.925. In the numerical method, the conservation of mass equation is replaced by a

pressure correction equation for compressible flows and thus incremental pressure is solved for instead of density.
The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence

model. The present numerical results show that there exists a reversed flow region at all free stream Mach
numbers considered whereas various k-e turbulence models fail to predict such a reversed flow region at low free

stream Mach numbers. The numerical results also show that the size of the reversed flow region grows exten-

sively due to the shock wave--turbulent boundary layer interaction as the free stream Mach number is increased.
These numerical results show that the turbulence model can resolve the turbulence field subjected to extra strains

caused by the streamline curvature and the shock wave-turbulent boundary layer interaction and that the
numerical method yields a significantly accurate solution for the complex compressible turbulent flow.

17, Key Words (Suggested by Author(s))

Transonic flow; Streamline curvature; Shock wave--

boundary layer interaction; Multiple-time-scale

turbulence model; Compressible turbulent flows

18. Distribution Statement

Unclassified- Unlimited

Subject Category 34

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

Unclassified Unclassified 40

NASAFORM1626OCT86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

22, Price"

A03




